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In studying head-sea diffraction by a slender body via matched asymptotics, Haren & 
Mei (1981) found numerically that the normalized inner problem is singular at a special 
frquency. In the present note, this singularity is confirmed by a different numerical 
method and by an analytical demonstration in the shallow-water limit. 

1. Introduction 
In  a recent paper by Haren & Mei (1980, hereafter referred to as I), a singularity is 

encountered in the inner problem of the matched asymptotic method for a slender zero- 
draft body in head seas in deep water. For arbitrary depth h, the decomposition €or 
the inner problem is 

(1)  

where $ is the total potential and the diffraction potential + satisfies 

$vv++m-k2$ = 0, - h  < z < 0; ( 2 4  

+*-qb = 0 on z = 0 (v = ktanhkh); (2b) 

@ * = O  on z =  -h;  ( 2 4  

$ = ech (cosh k(z + h) + +), 

a 
a n a n  -- ” - --(coshk(z+h)) on body B; 

++A,fyctoshk(z+h), ky+ fa. ( 2 4  

The purpose of this note is to provide further evidence that the singularity is 
inherent in the inner mathematical problem as posed, and is independent of the 
technique of solution, unlike the well-known irregular frequencies in diffraction theory. 
Indeed, for the geometry of I of a zero-draft body of width b, a unique frequency 
(kb)* ((kb)* = O( 1)) can always be found for any water depth near which the solution 
behaveslike ((kb)* - (kb))-l. For long wavesin shallow water (kh< 1) such a singularity 
is b t  shown analytically, while, in the case of arbitrary depth, numerical evidence is 
provided using a completely different method to that of I. A similar inner problem was 
addressed by Ursell(1968), but he proved uniqueness only in the limit k+O. 
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2. Shallowwater limit 
We invoke a shallow-water approximation in (2) for a flat-bottomed body with 

any clearance H (0 < H < A). Expanding @ in terms of Taylor series in z + h, it is 
ewily found that 

and $o satisfies, to leading order, 

$(Y, 2) = + w ( z  + ~ ) ) v A Y )  + or(k441 (3) 

IG-k~$o = ka, IYl c 4b, (4) 

and iK = 0, IYI !$. (5) 

$0 = Ccosh ky- 1, 1 ~ 1  < +b, (6) 

$0 = AolYl, IYI > ah (7) 

where the overbar denotes quantities for Iyl > ab. Under the raft, (4) has the 
symmetric solution 

while, outside, we have from (5 ) ,  
- 

and no constant term is admitted on account of (2e). Invoking the continuity of 
pressure (Po = $,) and flux (h$i = H&) at (yI = ib, we obtain a pair of inhomo- 
geneous algebraic equations for A, and C. Non-trivial homogeneous solutions exist 
when the coefficient determinant vanishes 

(8) 

Now this equation possesses a single positive root (kb)* so that the solution to the 
inner problem has a simple pole there. Away from that frequenoy, the solution is 
easily found. 

i k b  tanh (akb) - h/H = 0. 

3. Arbitrary finite depth 
In this case, a simple explicit solution is not available even for a body with zero 

draft, and we solve the inner problem numerically using a variational principle, which 
is rather different from the integral equation method of I. Because of the simple 
geometry, we represent both the solution $ underneath the raft (lyl c ib), and $ 
outside ((yl > i b )  by separate analytic series. Let 

2) = $ p ( z )  + @l(% 4, IYI c Bb, (9) 

where $p = - cash k(z + h) (10) 

is the particular solution satisfying the forcing on z = 0 (equation ( 2 4 )  and 
eigenfunction series with zero surface flux 

is the 

mn(z+h) cosh [ka+ (mn/h)9*y. 
h 

$1= c cmcos 
m= 0 

For Iyl > i b ,  we use the representation 
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where k ,  are t.he positive real solutions of k tan kh = - tr. The boundary-value problem 
for (@, $) would be completely satisfied if we further require the matching conditions 

It can be shown that equations (13) are equivalent to the stationarity of the following 
functional: 

J ( @ , ; G )  =so -h dz(3~ ,+@1~1 , -2~Tv) I f (L )~ .  (14) 

To see this, we take the first variation of (14) and obtain after collecting terms 

where (9) is used and 6eP = 0 since @p is known. The second integral in (15) can be 
shown to vanish by applying Green’s identity separately to $, 8$ and @l, 6@l respec- 
tively in the domains 1 yI > , < i b .  Hence 6J = 0 if and only if (@, 3)  satisfy (1 3). 
Substituting the truncated series for @l, 3 into (14), the vanishing of the first variation 
of J reduces to a system of symmetric algebraic equations for A,, and C,,, which can 
be readily inverted. 

The results are shown in figure 1 for kh = 0.1, 1 and 10, where 5 is the normalized 
force acting on a cross-section as defined in equation (4.1) of I. The curves for kh = 0.1 
and 10 are respectively indistinguishable from the shallow-water results and that of 
figure 7 of I, confirming the accuracy of the present numerical method. By extra- 
polation, the singular frequencies for kh = 0.1, 1 ,  10 are determined to be respectively 
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at 4kb = 1.200, 1.170 and 0-993, in the neighbourhood of which the matrix equation 
resulting from (14) becomes numerically singular. By examining the immediate 
neighbourhood numerically, it is also found that the singularity is a simple pole. We 
conclude that the normalized inner problem has unbounded solution at a single 
frequency for any arbitrary depth. 

4. Concluding remarks 
The occurrence of a singular solution to the boundary-value problem (2) at a 

specific frequency reminds one of the phenomenon of irregular frequencies encountered 
in diffraction theory when the method of integral equation is used. The solutions of the 
Fredholm integral equation obtained by distributing sources over the body breaks 
down at discrete frequencies which correspond to the eigenfrequencies of a fictitious 
interior problem. This failure, however, is a property of the integral equation method 
and not the original boundary-value problem which is unique. Such singularities, for 
example, are shown to be absent when an alternative method based on a variational 
formulation is used (Aranha, Mei & Yue 1979). In  the present case, an associated 
interior problem does not exist for the integral equation method. Our evidence shows 
that the singularity is present in the original boundary-value problem and is not the 
peculiarity of a solution method. 

The present difficulty is a result of the decomposition (1) which leads into the inner 
problem for $ (cf. equation (2.7) of I). In particular, the asymptotic value of $ for 
IyI b no longer contains the homogenous solution cosb k(z + h) or a constant term in 
(7) for shallow water. As was pointed out in I, the solution to the integral equation 
resulting from matching with the outer solution (equation (2.34) of I) produces no 
difficulty in principle across the singularity. The whole problem of an unbounded 
inner solution can in fact be avoided completely if the inner problem can be posed in 
terms of the total potential satisfying zero normal velocity on the body. This is 
already known for the special case of shallow water (Mei & Tuck 1980). Such a 
decomposition, however, cannot be avoided in a general formulation of head-sea 
diffraction using matched asymptotic method where the inner problem must in 
principle be solved numerically before matching. 
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